Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 152: 555-565, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679747

RESUMO

Recent studies have shown that alpha oscillations (8-13 Hz) enable the decoding of auditory spatial attention. Inspired by sparse coding in cortical neurons, we propose a spiking neural network model for auditory spatial attention detection. The proposed model can extract the patterns of recorded EEG of leftward and rightward attention, independently, and uses them to train the network to detect auditory spatial attention. Specifically, our model is composed of three layers, two of which are Integrate and Fire spiking neurons. We formulate a new learning rule that is based on the firing rate of pre- and post-synaptic neurons in the first and second layers of spiking neurons. The third layer has 10 spiking neurons and the pattern of their firing rate is used in the test phase to decode the auditory spatial attention of a given test sample. Moreover, the effects of using low connectivity rates of the layers and specific range of learning parameters of the learning rule are investigated. The proposed model achieves an average accuracy of 90% with only 10% of EEG signals as training data. This study also provides new insights into the role of sparse coding in both cortical networks subserving cognitive tasks and brain-inspired machine learning.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Atenção , Eletroencefalografia , Neurônios/fisiologia
2.
Front Artif Intell ; 5: 680165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280233

RESUMO

A spiking neural network model inspired by synaptic pruning is developed and trained to extract features of hand-written digits. The network is composed of three spiking neural layers and one output neuron whose firing rate is used for classification. The model detects and collects the geometric features of the images from the Modified National Institute of Standards and Technology database (MNIST). In this work, a novel learning rule is developed to train the network to detect features of different digit classes. For this purpose, randomly initialized synaptic weights between the first and second layers are updated using average firing rates of pre- and postsynaptic neurons. Then, using a neuroscience-inspired mechanism named, "synaptic pruning" and its predefined threshold values, some of the synapses are deleted. Hence, these sparse matrices named, "information channels" are constructed so that they show highly specific patterns for each digit class as connection matrices between the first and second layers. The "information channels" are used in the test phase to assign a digit class to each test image. In addition, the role of feed-back inhibition as well as the connectivity rates of the second and third neural layers are studied. Similar to the abilities of the humans to learn from small training trials, the developed spiking neural network needs a very small dataset for training, compared to the conventional deep learning methods that have shown a very good performance on the MNIST dataset. This work introduces a new class of brain-inspired spiking neural networks to extract the features of complex data images.

3.
Neuron ; 107(6): 1141-1159.e7, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32735781

RESUMO

Diabetic peripheral neuropathy (DPN) is a highly frequent and debilitating clinical complication of diabetes that lacks therapies. Cellular oxidative stress regulates post-translational modifications, including SUMOylation. Here, using unbiased screens, we identified key enzymes in metabolic pathways and ion channels as novel molecular targets of SUMOylation that critically regulated their activity. Sensory neurons of diabetic patients and diabetic mice demonstrated changes in the SUMOylation status of metabolic enzymes and ion channels. In support of this, profound metabolic dysfunction, accelerated neuropathology, and sensory loss were observed in diabetic gene-targeted mice selectively lacking the ability to SUMOylate proteins in peripheral sensory neurons. TRPV1 function was impaired by diabetes-induced de-SUMOylation as well as by metabolic imbalance elicited by de-SUMOylation of metabolic enzymes, facilitating diabetic sensory loss. Our results unexpectedly uncover an endogenous post-translational mechanism regulating diabetic neuropathy in patients and mouse models that protects against metabolic dysfunction, nerve damage, and altered sensory perception.


Assuntos
Neuropatias Diabéticas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Nociceptividade , Células Receptoras Sensoriais/metabolismo , Sumoilação , Canais de Cátion TRPV/metabolismo , Animais , Células Cultivadas , Ciclo do Ácido Cítrico , Neuropatias Diabéticas/fisiopatologia , Feminino , Gânglios Espinais/citologia , Glicólise , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Neural Netw ; 87: 96-108, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28107672

RESUMO

Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots.


Assuntos
Simulação por Computador , Condicionamento Psicológico , Olfato , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Condicionamento Psicológico/fisiologia , Drosophila melanogaster , Memória/fisiologia , Redes Neurais de Computação , Olfato/fisiologia
6.
J Integr Neurosci ; 15(3): 277-293, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27650784

RESUMO

The separation of input patterns received from the entorhinal cortex (EC) by the dentate gyrus (DG) is a well-known critical step of information processing in the hippocampus. Although the role of interneurons in separation pattern efficiency of the DG has been theoretically known, the balance of neurogenesis of excitatory neurons and interneurons as well as its potential role in information processing in the DG is not fully understood. In this work, we study separation efficiency of the DG for different rates of neurogenesis of interneurons and excitatory neurons using a novel computational model in which we assume an increase in the synaptic efficacy between excitatory neurons and interneurons and then its decay over time. Information processing in the EC and DG was simulated as information flow in a two layer feed-forward neural network. The neurogenesis rate was modeled as the percentage of new born neurons added to the neuronal population in each time bin. The results show an important role of an optimal neurogenesis rate of interneurons and excitatory neurons in the DG in efficient separation of inputs from the EC in pattern separation tasks. The model predicts that any deviation of the optimal values of neurogenesis rates leads to different decreased levels of the separation deficits of the DG which influences its function to encode memory.


Assuntos
Giro Denteado/fisiopatologia , Modelos Neurológicos , Redes Neurais de Computação , Neurogênese/fisiologia , Neurônios/fisiologia , Doença de Alzheimer , Animais , Transmissão Sináptica/fisiologia
7.
Front Cell Neurosci ; 9: 164, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972786

RESUMO

Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde messenger in neurons with synapses as low and band-pass filters to obtain high encoding efficiency in different environmental and physiological conditions.

8.
Front Syst Neurosci ; 9: 42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859189

RESUMO

Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron's encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed.

9.
Front Comput Neurosci ; 7: 183, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24391579

RESUMO

Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...